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Abstract. Some special effects in a 2D or 3D packing appear when this packing is made with 
particles belonging to an initially dense system. In order to achieve a better understanding 
of ‘arching effects’, a computer simulation of the collective random packing of disks in a 
plane under the influence of a weak central force has been set up. This work can be regarded 
as the first approach to the modelling of actual granular stackings resulting from mixing, 
pouring or fluidising particles. The dependence of the final packing fraction and mean 
coordination number on the initial density and on the step length has been studied on 
stackings of uniform disks. These functions can reach values as low as 0.76 and 3.40. 

1. Introduction 

Some particular collective effects can be observed in 2D or 3~ real packings. To under- 
stand the phenomena and to control these effects a 2D simulation has been carried out. 
This work will be described and the main results analysed after a review of the literature. 

Clarke and Wiley (1987) distinguish two types of method for preparing hard-sphere 
packings on a computer: the sequential addition model and the collective rearrangement 
model. 

The first method starts with a seed cluster and brings in additional spheres, one at a 
time, placing each one under the action of a central or vertical force until a mechanical 
equilibrium position is reached. Whenever the starting position of a sphere is randomly 
chosen, a reference packing is obtained: ‘random packing built grain by grain’. Such a 
packing has the following characteristics: the packing fraction Cis about 0.58-0.59, and 
the mean coordination number z is 6 (Powell 1980, Tory et a1 1968,1973, Visscher and 
Bolsterli 1972). The z-value is imposed by the building mode: to remain in equilibrium 
under gravity each sphere is lying on three contacts; the total number of contacts N ,  in 
a packing of N equal spheres is 3N. Since the number of particle pairs which is ~ z N ,  is 
equal to N , ,  the value of z is 6. 

The real packing closest to the reference packing is the so-called ‘loose random 
packing’ obtained by pouring the particles slowly into a receptacle from a small fall 
height. The range of packing fractions of this packing is 0.59-0.60 (Scott 1960, Bernal 
and Mason 1960, Macrae and Gray 1961) and z is about 6 (Bernal and Mason 1960). 
Nevertheless some important differences are to be noted; the frequency of coordination 
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numbers and the pore size distribution function are larger in the actual packing than in 
the simulated packing (Tory et a1 1968, 1973). Two phenomena can explain this fact. 

(i) On the one hand, a ball falling to the surface of the experimental sphere packing 
changes its kinetic energy into vibrations when the collision occurs. These vibrations can 
lead to rearrangements in the superficial layers. 

(ii) On the other hand, if the density of the falling balls is high enough, the spheres 
are not placed one by one; several particles can be locked together so that an arch can 
be formed. Bernal and Mason (1960) have pointed out that large cavities can be observed 
in loose packings of spheres. These holes are larger than the five canonic polyedra 
established by Bernal (1960). Meldau and Stach (1934) too observed some arches on 
sections of loose packing of spheres. 

In the collective rearrangement model, the positions of the spheres are randomly 
chosen. Then the sphere radius is increased step by step. At each step, the centres of 
two overlapping particles are kept apart along the direction of the straight line joining 
them. This process is repeated until the overlap-free packing fractions converge. Reduc- 
ing some sphere radii and vibrating the spheres unlocks the particles and a ‘close random 
packing’ with C = 0.64 and z = 6 is obtained (Clarke and Wiley 1987, Jodrey and Tory 
1981). 

These characteristics are in fairly good agreement with those of experimental pack- 
ings obtained after compression and vibration of loose random packings. Several experi- 
ments have shown that a packing fraction equal to 0.64 is a maximum value for random 
packings. Larger values can be reached by means of intense and long vibrations (Debbas 
and Rumpf 1966) or shear stresses (Scott et a1 1964, Rutgers 1962), but in both cases 
long-range order occurs. 

All the simulations performed up to now are not adapted to a description of packings 
of grains obtained after particle processing such as mixing. The models do not take into 
account either the percussion of the falling balls or collective interactions between 
grains. Macrae and Gray (1961) have clearly shown the important effect of these two 
phenomena. They poured spherical particles into a receptacle and made the particles 
flow rates vary; evidence of the influence of the falling-sphere density CO was obtained: 

(i) When CO is small, the packing fraction C of the resulting packing is that of the 
loose random packing (0.595 t 0.005). 

(ii) When CO becomes higher, the kinetic energy of falling particles allows the spheres 
in the upper layers of the packing to be rearranged into configurations which are more 
stable mechanically; the packing fraction increases. 

(ii) For the highest CO values, the rearrangements become impossible because the 
spheres are locked together when arriving at the surface, and the packing fraction 
decreases again. 

Macrae and Gray also observed that, for the higher velocity of spheres obtained with 
a higher fall height, the packing fraction increase was larger. On the contrary, for systems 
in which the velocity is weak and the initial density large enough, collective assemblies 
of spheres with arching effects must prevail. In fact, this is observed in fluidised beds of 
spheres when the flow rate is reduced to zero (C becomes less than 0.58; Wakeman 1975) 
and similarly when a vessel containing a packing of spheres is placed upside down 
(Epstein and Young 1962). Undoubtedly these phenomena also play a role during 
mixing. For fine particles, these phenomena are very important because the arches offer 
a higher mechanical stability due to stronger intergranular bondings. In the same way, 
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Figure 1. Condition for the rotation of a moving disk: ( a )  locked disk ($ Iz E II, n I12; ( b )  
the rotation is allowed. 

if particles are polyhedral, face-to-face contacts give the arches a greater stability. Ammi 
et a1 (1987) have shown that the minimum packing fraction of 2~ polygon packings was 
obtained with pentagons and was as low as 0.78 (to be compared with about 0.82 for 
disks). 

2. Algorithm to prepare a collective 2~ packing 

The present work explores a numerical method for preparing grain packings in which 
collective effects are simulated on a computer. Because of the complexity of the pheno- 
mena we have been dealing with a 2~ space. Disks are moved collectively under the 
influence of a weak central force; the percussion effects will be neglected, which cor- 
responds to the physical case where the particles have a low velocity. Under such 
conditions, arches can be obtained. In spite of their low mechanical stability, they will 
never be destroyed afterwards, and the characteristic fiatures of random packings with 
a low packing fraction can be seen. 

We have simulated a collective random packing of N equal disks under a central 
force on an M380 Olivetti computer. First of all, a disk is placed in the centre of the 
plane. This disk (radius R,) is slightly larger than all the others (radius R )  to avoid the 
formation of hexagonal structures. N randomly chosen disks are then located in a great 
circle, the radius p of which is a function of N ,  R and the fixed initial density CO: 

p = v m .  
The program consists of a series of cycles. At each cycle, all the disks are moved, one by 
one. The order of displacement corresponds to the order of the distances to the centre 
at the beginning of the cycle (nearest disks being moved first). Each disk is moved toward 
the centre with a step lengthp small enough that each cycle on the Nparticles simulates 
a slight collective motion of the disk assembly. If a disk I, happens to encounter another 
disk I1 during its straight movement, then it is assumed that the target disk I1 does not 
move. The disk I, rolls around I1. During the rotation, if a collision with a second disk 
I2 occurs, two criteria are investigated (figure 1). 



3044 L Rouillk et a1 

. . . . .  
. . . .  , .  

' '  ' "  : :  : :  
, . .  . . . . . .  
. . .  . . . . . .  
. , . . . , . , (3 . . . . . . .  Figure 2. End of the rotation of a disk. 

(i) The two target disks block the moving disk Io (figure l(a)). Then Io is stopped 

(ii) Io can roll on the second disk under the action of the central force (figure l(b)). 
and the following disk is considered. 

Then it continues. 

A simple geometrical test on the respective positions of I2 and the half-planes Ill 
limited by the straight line IoC and containing 11, and 112 limited by the straight line IoIl 
and containing C allows us to choose between these two cases. 

After the target disk has been passed, the rotating disk can recover its rectilinear 
motion towards the centre (figure 2). The movement is stopped when one of the three 
following conditions is achieved. 

(i) The moving disk encounters the central disk. 
(ii) The configuration in figure l (a)  is obtained. 
(iii) The length of the total displacement of the centre of the moving disk (rectilinear 

and curvilinear) is equal to the stepp. 

Then the following disk is examined and, when all the disks have been treated, a new 
cycle starts. The program stops when no disk is moved during a cycle; the packing is then 
in equilibrium under the central force. 

3. Results 

The program written in PASCAL 4.0 is capable of handling approximately 1500 disks. In 
general, 500 disks are sufficient to give consistent characteristics. The dependence of 
the properties of the final packing upon the step length p and the initial density CO has 
been examined on packings of 500 disks. The same principle is adopted to measure 
packing fraction and coordination number. The packing is cut in circular 'rings' which 
are R/2 thick. The first ring lies around the central disk. Measurements are performed 
for each ring, and the curve of variation in the parameter considered is drawn as a 
function of the distance to the centre. The average is evaluated after elimination of the 
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Figure 3. Packing fraction as a function of the relative distance to the centre 
(C" = 0. l p / R  = 200) 
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Figure 4. Development of (a )  packing fraction and ( b )  mean coordination number versus 
relative step length for CO = 0.1 

central area and the edge of the packing (figure 3). So as to estimate the packing fraction 
in a ring, we first determine the disks intersecting the ring. The area A, of the surface 
cut by these disks in the circular ring is calculated according to the method explained in 
the appendix. The packing fraction in the ring is given by ASIA, where A,  is the ring 
area. To  measure the mean coordination number, we must look for the disks i whose 
centres are within the ring. All the disksjfor which d ,  < 2R + lo-' are countedfor every 
disk i (dij is the distance between the centres of i andj) .  We average the values obtained 
for all the disks i and thus obtain the mean coordination number in the ring. 

Figures 4(a )  and 4(b) show the influence of the step length on the packing fraction 
and the average coordination number z ,  respectively, for an initial density CO = 0.1. 
When  p is larger than the great circle radius p used in the initial drawing lots, the disks 
will move one by one and each of them will find a definitive location immediately at the 
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Figure 5. Packing with CO = 0.1 andp/R = 200. 

Figure 6. Packing with CO = 0.1 andp/R = 0.2 

first cycle. Then a random packing built ‘grain by grain’ has been simulated. In this case 
some regions present a kind of hexagonal order (figure 5 ) .  The packing fraction and 
mean coordination number can vary considerably. Therefore, mean values have been 
calculated from several packings of 1500 disks: C = 0.835 t 0.005 and z = 4.21 t 0.05. 
By contrast, using a small value for the step length with respect to the grain size allows 
us to simulate collective displacements of disks. Figure 4 indicates that no important 
changes in the results can be noted when p/R-values are less than or equal to 0.5. So 
p/R < 0.51 can be used to simulate collective random packing (lower values strongly 
reduce the program’s rate). In this case, a ‘500 equal-disks run’ takes approximately 2 h 
(CPU time). Figure 6 represents this packing with some arches. Cand z strongly depend 
on the initial density. 

The variation in the initial density over a wide range (10-3-0.5) allows us to study 
the associated changes in packing fraction and mean coordination number for packings 
built collectively (p/R = 0.5) (figure 7). For CO less than the number of cycles to 
achieve the packing is so large that the run time exceeds several days. For CO > 0.5 it is 
impossible to assign locations to the N disks in the initial circle of drawing lots (radius p 
fixed). When CO is small, collisions between disks during the stacking process are rare 
and the packing has the characteristics of a ‘grain-by-grain’ nature although it is built 
collectively (for CO = C = 0.822 t 0.003 and z = 4.15 t 0.05). Crystallised 
regions may be encountered. The minimum packing fraction is expected to be at a 
high starting concentration, where the collective effects become very important. This 
expectation is fulfilled but the changes are surprisingly significant. For CO+ 0.5, 
C = 0.756 t 0.003 and z = 3.40 t 0.02. Zones presenting hexagonal order do not exist 
(figure 8). Another difference between the ‘grain-by-grain’ packing and the collective 
packing with minimum packing fraction can also be pointed out in the distribution of 
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Figure 7. Development of ( a )  packing fraction and ( b )  mean coordination number versus 
initial density ( p  = R/2) .  

coordination numbers. This distribution has been calculated after elimination of the 
central area and edge of the packing. In the ‘grain-by-grain’ packing, disks are not 
able to have a coordination number lower than 3, and the fraction of disks having a 
coordination number of 4 is very high (figure 9). In collective packings, the number of 
disks having a coordination number of 4 or 5 is not so important and some disks have a 
coordination number of 2, which is relevant to the packing mode (figure 10). 

4. Discussion 

It seems interesting to compare our results with those published in other papers dealing 
with 2~ packings. Two theoretical independent calculations lead to the same estimation 
of the packing fraction in random disks packings; Bideau et a1 (1986) give C = n2/ 
12 = 0.822, and Berryman (1983) gives C = 0.823 t 0.02. Laboratory experiments and 
‘grain-by-grain’ simulated packings have produced packing fractions between 0.82 and 
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Figure 9. Distribution of coordination numbers Figure 10. Distribution of coordination numbers 
(CO = 0.001 - p/R = 2500). (Co=O.5 -p/R=0.5) .  

Table 1. Different results on ‘grain-by-grain’ packings. 

Reference Packing mode C z 

Bideau and Troadec (1984) Analogue under 0.84 2 0.01 3.75 2 0.1 
gravity 

gravity 

central force 

gravity 
Dodds and Kuno (1975) Numeric under - 4.02 

gravity 
Bideau er a1 (1986) Numeric under 0.83 4.1 

central force 
Kausch et a1 (1971) Numeric under 0.827 * 0.004 - 

central force 
Rubinstein and Nelson Numeric under 0.825 0.02 - 
(1982) central force 
This work Numeric under 0.835 ? 0.005 4.21 2 0.05 

central force 

Dodds (1975) Analogue under - 4.72 

Quickenden and Tan (1974) Analogue under 0.830 +. 0.015 4 

Visscher and Bolsterli (1972) Numeric under 0.82 - 

0.84 (see table 1). Values greater than 0.82 are generally attributed to the presence of 
crystallised regions (Visscher and Bolsterli 1972, Bideau et af 1986, Quickenden and 
Tan 1974, Kausch et a1 1971, Rubinstein and Nelson 1982). So it seems that the random 
‘grain-by-grain’ packing is the 2D random packing with the maximum packing fraction 
and there is no distinction between the random ‘grain-by-grain’ packing and the random 
close packing in two dimensions. Nevertheless, there are some indications that a 2~ close 
random packing really exists, the packing fraction being 0.87 ? 0.004 (Schreiner and 
Kratky 1982). 

These results are in excellent agreement with our results from computer experiments 
obtained for low Co-values andp/p > 1. Because they all use a ‘grain-by-grain’ building 
mode, simulated packings give similar values of C and z .  In the analogic simulation of 
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Bideau and Troadec (1984), the bed was submitted to avibration and crystallised regions 
were observed. Quickenden and Tan (1974) compressed a series of disks lying on a 
plane, each disk separated from the other by a large distance. Their experiments gave 
results very close to the preceding ones (see table 1). The theoretical mean coordination 
number in a 2D ‘grain-by-grain’ packing is 4 as each disk must bring two contacts into 
equilibrium and thus four bonds are created. In fact, crystallisation leads to a slightly 
higher value in numerical packings (table 1). Our results, obtained for low values of CO 
andp/p > 1 are in agreement with other simulation results. It is interesting to note that 
our packings exhibit some kind of order ( z  > 4) although no disk presents a coordination 
number of 6 (figure 9). The analogic measurements made by Dodds (1975) and Bideau 
and Troadec (1984) are mean values of coordination numbers evaluated on binary disk 
packings. The difference between the two results could be explained by the difficulty in 
differentiating an actual contact from a close neighbourhood in real packings. 

So our program is able to simulate ‘grain-by-grain’ packings, but its major advantage 
is to simulate collective packings. The development of the characteristics of the packing 
built collectively ( p / R  < 0.5) with the initial density exhibits a limiting state in which 
arching effects are important. This limiting state can be found at CO = 0.5 and the 
following macroscopic minimum values are obtained: C = 0.756 +- 0.03 and z = 
3.40 ? 0.03. As for the minimum packing fraction, no similar result has been published 
so far that we know of. Bideau et ul (1986) have determined the minimum coordination 
number in a packing of disks which are stable under gravity. They made a digital 
simulation on a hexagonal network oriented in such a way that gravity would not be 
parallel to one of the network axes. Then they removed the bondings which were not 
necessary to the equilibrium of a particle or of the packing at random. The minimum 
found in this case was z = 3.45 +- 0.05. Uhler and Schilling (1985) have calculated a 
lower value of z = 3.416 with a different stability criterion. These values are close to 
ours. 

When CO varies for 2 0  packings built collectively (simulated with p / R  < 0.5), a 
transition between two states is observed with a sharp variation in packing fraction und 
coordination number at an initial density of about 0.1. 

If one assumes that this result can be extrapolated to 3D space, the critical initial 
density ( C O ) ,  in three dimensions can be roughly estimated as follows. Let us suppose 
that for a 2~ packing of disks the N disks are located according to a square network. If A 
is the distance separating the edge of one disk from that of the next disk, then we get the 
relation nR2 = Co(A + 2R)2. Under these conditions the critical parameter A for the 
transition is equal to 3.6R for CO = 0.1. From this we conclude that a disk assembly starts 
to have a collective behaviour when A/R is about 3 or 4. Supposing now that this critical 
parameter AIR remains unchanged in 3 ~ ,  inversely it is easy to calculate the critical initial 
density (CO), for an assembly of spheres belonging to a cubic structure with a cell 
parameter a = A + 2R. As $nR3 = (CO),(A + 2R)3, (CO), can be deduced from the 
relation 

CO3 = (4/32/n)Cp.  
If we put CO = 0.1, then we obtain (CO), = 0.024. Such a value is very often exceeded 
in elementary operations in chemical engineering such as the mixing of solids and the 
pouring or fluidising of particles, so that arching effects are likely to be expected. 

5. Conclusion 

Our algorithm allows us to simulate a collective packing of equal disks submitted to a 
central force. When using large moving steps, the classical case of packings built grain 
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by grain is found again. With a moving step of less than half the radius of the disks, the 
collective behaviour of the particles can be described; if the initial density increases, the 
packing fraction and mean coordination number drop to 0.76 and 3.4; those values 
are characteristic of a collective packing with arching effects only. Such results are 
qualitatively consistent with those in the experiments of Macrae and Gray (1961): they 
studied the packing fraction of a packing of spheres obtained after pouring them into a 
vessel. They noticed that this packing fraction reduced as the density of the falling 
spheres increased. 

Appendix. Calculation of the area of a disk intersected by a circular ring 

Let us consider a circular ring with centre C limited by two circles C1 and C2 of respective 
radii R I  and R,, and a disk D with centre P and radius R ,  at a distance d to centre C 
(figure Al) .  Let us denote by Ai ( i  = 1 , 2 )  the area of intersection of the disk D with the 
disk Ci, and A ,  the area of intersection of the disk D with the ring. Figure A1 shows that 
three cases must be considered for the calculation of A,.  Case 1 is 

R2- R G d C RI - R 

A, = x R 2  - A2. 

n 
I X P  I 

W 
x c  x c  x c  

Case 1 Cnse 2 Case 3 

Figure A l .  Intersection of a disk D with a circular ring. 

Figure A2. Area of intersection of a disk D with a 
disk C,. 
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Case 2 is 

RI - R C d C Rz f R 

A,=A,-A2. 

Case 3 is 

R2 f R S  d G  RI f R 

A,=A,.  

Then the problem becomes the evaluation of the area Ai  of intersection of two disks 
(figure A2). This has been done using geometrical considerations: 

Ai = (R2/2) (0  - sin 0 )  + ( R f / 2 ) ( 0 ,  - sin O i )  

with 

COS 0 = { d 2  + [(R? - R2)/dI2 - 2R:}/2R2 

and 

COS B i  = &(d/Ri - R2/dRi  + R i / d ) 2  - 1. 
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